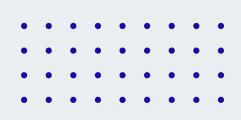
INTRODUCTION TO Software project Management

SOFTWARE ENGINEERING 2 | CS6300

JOHN PAUL M. MANUEL | ACLC COLLEGE OF TAYTAY

WHAT IS SOFTWARE PROJECT MANAGEMENT?

Software Project Management is the art and science of planning, organizing, and leading software projects. It is a specialized discipline within project management that focuses on ensuring the successful execution of software projects by implementing planning, monitoring, and control strategies.



SOFTWARE PROJECT MANAGEMENT **PRINCIPLES OF MODERN SOFTWARE** MANAGEMENT

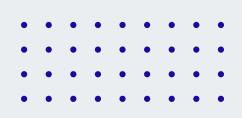
- Architecture-First Approach Prioritize system architecture to manage complexity.
- **Iterative Life-Cycle Process** Identify and mitigate risks early.
- Component-Based Development Emphasize reusability in design methods.
- Change Management Establish a structured environment for modifications.
- **Round-Trip Engineering** Use tools to allow seamless forward and reverse engineering.

SOFTWARE PROJECT MANAGEMENT **PRINCIPLES OF MODERN SOFTWARE** MANAGEMENT

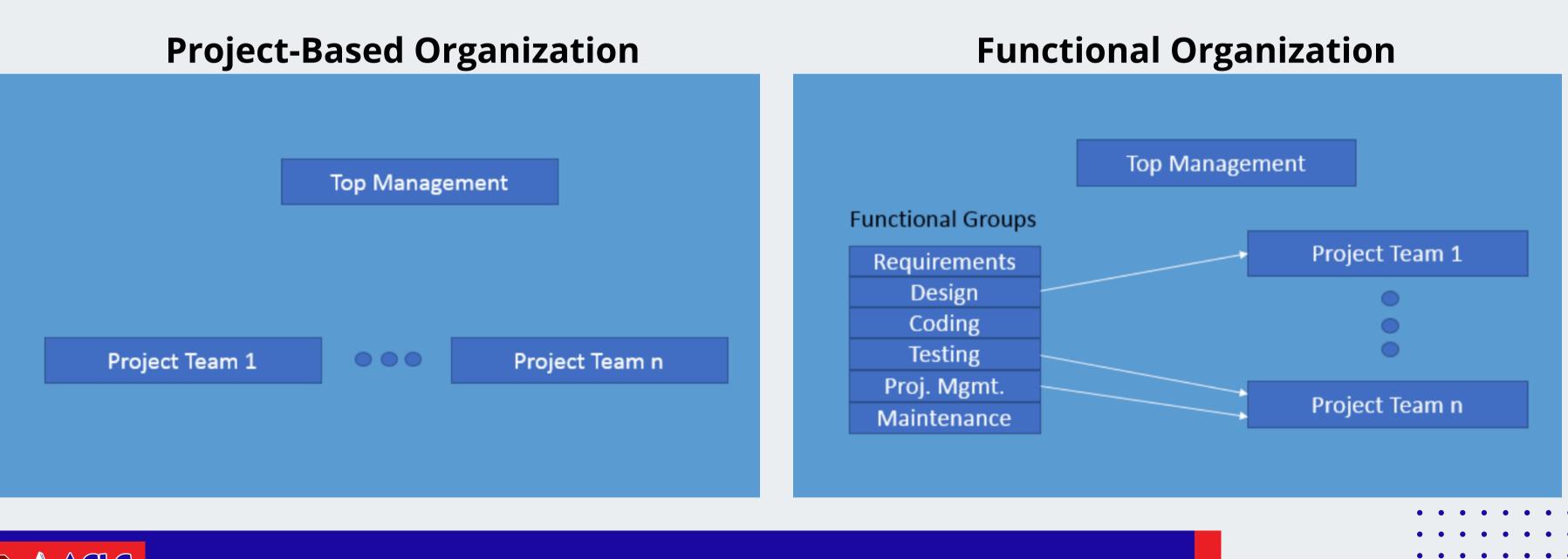
- Model-Based Notation Document designs rigorously.
- Objective Quality Control Integrate measurable assessment techniques.
- **Demonstration-Based Approach** Validate intermediate results through prototypes.
- Incremental Releases Deliver functional features in stages.
- **Configurable Process** Ensure scalability and adaptability.

SOFTWARE PROJECT MANAGEMENT ORGANIZATIONAL & TEAM STRUCTURE IN SOFTWARE DEVELOPMENT

Organizational Structure


Software organizations assign teams to different projects based on structural models, each with advantages and disadvantages. The choice of structure impacts efficiency, communication, and project success.

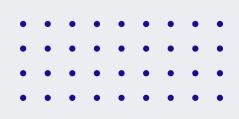
Functional vs. Project-Based Structure


- Functional Organization: Teams are divided based on expertise (e.g., UI, backend, testing).
- **Project-Based Organization:** Teams are formed per project, fostering crossfunctional collaboration.

SOFTWARE PROJECT MANAGEMENT ORGANIZATIONAL & TEAM STRUCTURE IN SOFTWARE DEVELOPMENT

SOFTWARE PROJECT MANAGEMENT ADVANTAGES OF FUNCTIONAL ORGANIZATION

Specialization & Expertise – Employees become highly skilled in their specific domain.


Efficient Resource Allocation – Team members can be assigned across multiple projects efficiently.

Clear Career Growth – Employees have a well-defined path within their function (e.g., UI specialists can advance within UI roles).

Knowledge Retention – Expertise remains within the organization, even if projects change.

Standardized Processes – Best practices are maintained within departments, improving consistency.

SOFTWARE PROJECT MANAGEMENT DISADVANTAGES OF FUNCTIONAL ORGANIZATION

X Limited Cross-Functional Collaboration – Lack of interaction between teams can cause communication gaps.

X Slow Decision-Making – Requires approval from multiple levels, leading to bureaucracy.

X Less Project Focus – Teams work on multiple projects simultaneously, reducing efficiency in specific projects.

X Departmental Silos – Teams may prioritize their functional goals over overall project success.

X Lower Adaptability – Changing requirements may be harder to implement due to rigid structures.

SOFTWARE PROJECT MANAGEMENT ADVANTAGES OF PROJECT-BASED ORGANIZATION

✓ **Stronger Project Focus** – Teams are fully dedicated to a single project, ensuring better efficiency.

✓ Faster Decision-Making – Decisions can be made within the project team, reducing bureaucratic delays.

Cross-Functional Collaboration – Encourages teamwork and knowledge-sharing across different disciplines.

✓ **More Flexibility** – Teams can quickly adapt to project changes without being restricted by department structures.

✓ Better Ownership & Accountability – Team members feel more responsible for project success.

SOFTWARE PROJECT MANAGEMENT DISADVANTAGES OF PROJECT-BASED ORGANIZATION

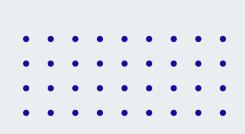
X Resource Duplication – Since each project has its own team, expertise may not be efficiently shared across projects.

X Higher Costs – Maintaining separate teams for each project can increase operational expenses.

X Knowledge Loss – When a project ends, expertise and experience may not be retained effectively.

X Career Uncertainty – Employees may struggle with career progression as they move between projects.

X Limited Long-Term Skill Development – Employees may not develop deep expertise in one area since they work on multiple aspects of a project.



SOFTWARE PROJECT MANAGEMENT **SOFTWARE PROJECT TEAM STRUCTURES**

- Chief Programmer Team A strong leader (chief programmer) directs all development.
- **Democratic Team** Equal participation and decision-making by all team members.
- **Mixed Team** A blend of hierarchical and democratic approaches for flexibility.

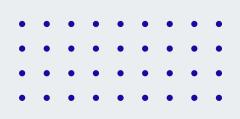
SOFTWARE PROJECT MANAGEMENT **KEY ATTRIBUTES OF A GOOD SOFTWARE ENGINEER**

- Strong foundation in software engineering principles.
- Good domain knowledge and programming skills.
- Effective communication (oral, written, and interpersonal).
- High motivation and discipline.
- \checkmark Ability to work in a team.
- Analytical thinking and problem-solving skills.

SOFTWARE PROJECT MANAGEMENT PROJECT PLANNING, MONITORING & CONTROL

Project Planning

- The strategic process of defining goals, estimating resources, and setting timelines.
- Utilizes project management tools like Gantt charts for scheduling.

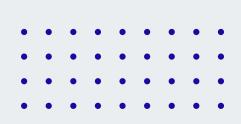

Monitoring & Evaluation (M&E)

- Ensures project objectives are met through performance tracking.
- Identifies risks and deviations early for timely interventions.

Software Quality Control

- Enforces quality standards throughout development.
- Ensures deliverables meet customer expectations and compliance requirements.

SOFTWARE PROJECT MANAGEMENT **PROJECT LIFECYCLE: INITIATION & CLOSURE**


Project Initiation

- The pre-planning phase defining scope, objectives, and stakeholders.
- Lays the foundation for execution and risk assessment.

Project Closure

- Formal completion of a project with deliverables handed over.
- Involves documentation finalization, stakeholder notification, and post-project evaluations.

SOFTWARE PROJECT MANAGEMENT TECHNICAL, QUALITY, & MANAGEMENT PLANS

Technical Planning

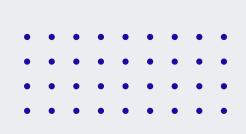
- Outlines design, development, and resource allocation strategies.
- Provides a roadmap for execution.

Quality Planning

- Establishes quality benchmarks for project deliverables.
- Defines verification and validation methodologies.

SOFTWARE PROJECT MANAGEMENT KEY COMPONENTS OF A QUALITY PLAN

- Management responsibilities
- Documentation control
- Requirements scope
- Design and development control
- Testing and quality assurance
- Risk mitigation strategies
- Quality audits and defect tracking
- Training needs assessment



SOFTWARE PROJECT MANAGEMENT PROJECT MANAGEMENT PLANNING PROCESS

- **Define Goals** Set clear and measurable project objectives.
- **Identify Resources** Determine the required manpower, tools, and budget.
- **Outline Key Tasks** Break down the project into actionable steps.
- **Prioritize & Schedule** Assign importance levels and create a timeline.
- Allocate Responsibilities Assign tasks to team members based on skills.
- **Monitor & Evaluate** Set up feedback mechanisms to track progress.
- Adjust & Improve Identify alternative strategies to optimize outcomes.

