
A* (A STAR) SEARCH
ALGORITHM

INTRODUCTION TO AI | AI6310

JOHN PAUL M. MANUEL | ACLC COLLEGE OF TAYTAY

VERSION 01-250211-2425

WHAT IS A* ALGORITHM?
The A* algorithm is an informed search algorithm, meaning it leverages a heuristic
function to guide its search towards the goal. This heuristic function estimates the cost of
reaching the goal from a given node, allowing the algorithm to prioritize promising paths
and avoid exploring unnecessary ones.

The A* algorithm is a powerful and widely used graph traversal and path finding
algorithm. It finds the shortest path between a starting node and a goal node in a
weighted graph.

HOW DOES THE A* ALGORITHM WORK?
The A* algorithm combines the best aspects of two other algorithms:

Dijkstra's Algorithm: This algorithm finds the shortest path to all nodes from a
single source node.

1.

Greedy Best-First Search: This algorithm explores the node that appears to be
closest to the goal, based on a heuristic function.

2.

Imagine you're trying to find the shortest route between two cities on a map. While
Dijkstra's algorithm would explore in all directions and Best-First Search might head
straight toward the destination (potentially missing shortcuts), A* does something
cleverer. It considers both:

The distance already traveled from the start
A smart estimate of the remaining distance to the goal

A* ALGORITHM

https://www.datacamp.com/tutorial/dijkstra-algorithm-in-python

KEY COMPONENTS OF A* ALGORITHM
To understand A* algorithm, you need to be familiar with these fundamental concepts:

Nodes: Points in your graph (like intersections on a map)

Edges: Connections between nodes (like roads connecting intersections)

Path Cost: The actual cost of moving from one node to another

Heuristic: An estimated cost from any node to the goal

Search Space: The collection of all possible paths to explore

A* ALGORITHM

KEY CONCEPTS IN A* SEARCH
The A* algorithm's efficiency comes from its smart evaluation of paths using three key
components: g(n), h(n), and f(n). These components work together to guide the search
process toward the most promising paths.

A* ALGORITHM

Path cost g(n)Path cost g(n)
The path cost function g(n) represents the exact, known distance from the initialThe path cost function g(n) represents the exact, known distance from the initial
starting node to the current position in our search. Unlike estimated values, this cost isstarting node to the current position in our search. Unlike estimated values, this cost is
precise and calculated by adding up all the individual edge weights that have beenprecise and calculated by adding up all the individual edge weights that have been
traversed along our chosen path.traversed along our chosen path.

Mathematically, for a path through nodes n0(start node) to nk (current node), we canMathematically, for a path through nodes n0(start node) to nk (current node), we can
express g(n) as:express g(n) as:

w(ni,ni+1) represents the weight of the edge connecting node ni to node ni+1 .w(ni,ni+1) represents the weight of the edge connecting node ni to node ni+1 .

KEY CONCEPTS IN A* SEARCH
A* ALGORITHM

Heuristic function h(n)
The heuristic function h(n) provides an estimated cost from the current node to the
goal node, acting as the algorithm's "informed guess" about the remaining path.
Mathematically, for any given node n, the heuristic estimate must satisfy the condition
h(n)≤h*(n) , where h*(n) is the actual cost to the goal, making it admissible by never
overestimating the true cost.
In grid-based or map-like problems, common heuristic functions include the
Manhattan distance and Euclidean distance. For coordinates (x1,y1) of the current
node and (x2,y2) of the goal node, these distances are calculated as:

 Manhattan distance Euclidean distance

KEY CONCEPTS IN A* SEARCH
A* ALGORITHM

https://www.datacamp.com/tutorial/manhattan-distance.
https://www.datacamp.com/tutorial/euclidean-distance

Total estimated cost f(n)
The total estimated cost f(n) is the cornerstone of A* algorithm's decision-making
process, combining both the actual path cost and the heuristic estimate to evaluate
each node's potential. For any node n, this cost is calculated as:

Where:
g(n) represents the actual cost from the start to the current node,
h(n) represents the estimated cost from the current node to the goal.

The algorithm uses this combined value to strategically choose which node to explore
next, always selecting the node with the lowest f(n) value from the open list, thus
ensuring an optimal balance between known costs and estimated remaining distances.

KEY CONCEPTS IN A* SEARCH
A* ALGORITHM

https://www.datacamp.com/blog/what-is-an-algorithm

The A* algorithm maintains two essential lists
Open list:

Contains nodes that need to be evaluated
Sorted by f(n) value (lowest first)
New nodes are added as they're discovered

Closed list:
Contains already evaluated nodes
Helps avoid re-evaluating nodes
Used to reconstruct the final path

The algorithm continually selects the node with the lowest f(n) value from the open list,
evaluates it, and moves it to the closed list until it reaches the goal node or determines
no path exists.

MANAGING NODE LISTS
A* ALGORITHM

EXAMPLE 1
A* ALGORITHM

EXAMPLE 2
A* ALGORITHM

A

READY FOR ACTIVITY?
BOR

ACTIVITY
A* ALGORITHM

ACTIVITY
A* ALGORITHM

